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LUDERS'S RULE AS A DESCRIPTION OF INDIVIDUAL 
STATE TRANSFORMATIONS* 

SERGIO MARTINEZtt 

Instituto de Investigaciones Filosoficas 
Universidad Nacional Autonoma de Mexico 

Usual derivations of Lilders's projection rule show that Liuders's rule is the 
rule required by quantum statistics to calculate the final state after an ideal (min- 
imally disturbing) measurement. These derivations are at best inconclusive, 
however, when it comes to interpreting Liuders's rule as a description of indi- 
vidual state transformations. In this paper, I show a natural way of deriving 
Liiders's rule from well-motivated and explicit physical assumptions referring 
to individual systems. This requires, however, the introduction of a concept of 
individual state which is not standard. 

1. Introduction. In 1955, von Neumann added to his formulation of 
quantum mechanics a postulate that he considered to be indispensable to 
provide a satisfactory description of the measurement process. Von 
Neumann's original version of this postulate said that "if a physical quan- 
tity R is measured twice in succession on a system then we get the same 
value each time" (p. 335). Nowadays the postulate is known as "the first 
kind condition" (Pauli) or "the projection postulate" (Margenau). 

It is usually considered noncontroversial to think of the projection pos- 
tulate as a simplifying assumption describing a class of idealized mea- 
surement procedures. For maximal measurements this seems to provide 
a satisfactory interpretation of von Neumann's postulate, but for non- 
maximal measurements, that is, for measurements of magnitudes with 
degenerate eigenvalues, a further problem arises. 

Suppose that we measure a nonmaximal magnitude A. Von Neumann's 
view was that such a measurement should be understood as a partial de- 
scription (with loss of information) of a maximal measurement. Accord- 
ingly, von Neumann argued that the final state of a system after a non- 
maximal measurement should be described by a mixture of all eigenstates 
of the eigenvalue representing the measurement result. Luders was the 
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first to point out that such a rule for the calculation of a final state after 
a nonmaximal measurement could not be right since at least in some cases 
it leads to unacceptable results. 

Bub (1979) illustrates the main difficulty with von Neumann's proposal 
by means of the following example. Suppose that a two particle system 
S1 + S2 is represented by the Hilbert space H1 (0 H2, where H1 represents 
S1 and H2 represents S2. Let A be a maximal magnitude in S1, and suppose 
we measure nonmaximal magnitude A (0 T2 in H1 (0 H2. According to 
von Neumann's proposal the state resulting from this measurement de- 
pends on the maximal magnitude in H1 (0 H2 that we choose to measure. 
But there is a very natural and compelling sense in which this measure- 
ment seems to be independent of the choice of maximal magnitude. After 
all, measuring A (0 I2 is from a physical viewpoint nothing more than 
measuring the maximal magnitude A in S1. An appropriate rule for the 
change of state on measurement should be independent of the choice of 
maximal magnitude. 

Luders (1951) proposed the following alternative rule for the descrip- 
tion of the final state after a nonmaximal measurement: the final state 
after a (first kind) nonmaximal measurement is given by the projection 
of the original state on the subspace (eigenspace) of the measurement 
result. In Martinez (1990), I examine in detail the most conspicuous 
derivations of Liiders's rule and argue that one has to distinguish carefully 
between justifying an interpretation of Lilders's rule as a purely statistical 
rule for the calculation of the final (statistical) state and justifying an 
interpretation of it as a description of individual state transformations. 
Liiders's arguments, as well as more sophisticated arguments (by Herbut 
1969, Bub 1979 and others) show that Liuders's rule is the rule required 
by quantum mechanical statistics. But the usual derivations are at best 
inconclusive when it comes to justifying Luders's rule on the second 
interpretation. In this paper, I show that if the underlying concept of in- 
dividual state in the interpretation of quantum mechanics is not the usual 
(standard) concept but a concept of individual state relative to magni- 
tudes, there is a natural way of deriving Lilders's rule from well-motivated 
and explicit physical assumptions. 

2. The Concept of Individual State. An individual state is supposed to 
describe the values of magnitudes (properties) of a system. In classical 
statistical mechanics, we can take statistical states to reflect distributions 
over properties of individual systems in a straightforward way. This pro- 
cedure is summarized in the concept of phase space. States of individual 
systems can be identified with pure (dispersion free) statistical states. An 
analogous reasoning leads us to the usual (standard) concept of individual 
state as a set of "properties" (closed projections) to which a given "state- 
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vector" assigns probability one. In the framework of the present inves- 
tigation, the quantum logical (lattice) formulation of quantum mechanics 
(see appendix for a brief overview), this is equivalent to say that states 
are represented by lattice ultrafilters, that is, by lattice filters generated 
by atoms of the lattice representing the system. A measurement state 
transformation can be defined accordingly as a function of two variables: 
T(a,r) = b, where a is the (lattice) atom generating the initial state, r is 
the proposition representing the result of measurement and b is the (lat- 
tice) atom generating the final state. The equation T(a,r) b is supposed 
to satisfy the condition that b < r. 

The analysis of the projection rule that I have carried out in Martinez 
(1988, 1990) strongly suggests that the clarification of the role of the 
projection rule in quantum mechanics is intimately related with the ex- 
ploration of a different (nonstandard) concept of individual state. Several 
alternative representations of the concept of individual state are scattered 
(most often implicitly) in the literature. Kochen (1979) has proposed a 
distinction between individual and statistical states. Statistical states for 
Kochen are probability functions assigning probabilities to state (or prop- 
erty) transitions. Individual states represent the properties a system has 
relative to a certain interaction. Kochen shows how the Hilbert space 
formalism has a natural way of accommodating such a concept of indi- 
vidual state. A pair of correlated Boolean a-algebras of projection op- 
erators always exists in the two component spaces representing the in- 
teracting systems. Individual states for Kochen are represented by ultrafilters 
in these Boolean a-algebras. States which are represented by Boolean 
ultrafilters will be here generically referred to as B-states. Kochen's in- 
dividual states are examples of this sort of individual states. I will derive 
Luiders's rule for B-states. 

Different interpretations, of course, can be formulated under the as- 
sumption that states for individual systems are represented by Boolean 
filters. Details on the way in which B-filters can be linked to particular 
interpretations are here left aside as this is not relevant to my present 
purpose. An exposition and discussion of alternative definitions of indi- 
vidual states in the quantum logical framework and their relation with 
different interpretations of quantum mechanics can be found in Hardegree 
(1980). In general, Bohrian type interpretations lead to a quantum logical 
formalization centered on the concept of B-state. A relevant discussion 
of the relation between some of Bohr's semantical insights on the inter- 
pretation of quantum mechanics and a quantum logical framework can be 
found in van Fraassen and Hooker (1976). 

The assumption that individual states are represented by Boolean ul- 
trafilters leads to a modification of the concept of state transformation 
used in the orthodox analysis. A state transformation is now a function 
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mapping Boolean filters to Boolean filters. It will be shown in the next 
pages that one can derive Liuders's rule in this framework in such a way 
that Liiders's rule receives a natural interpretation as a description of "dis- 
persion free" individual state transformations. First, the framework is 
sketched on the basis of which a semantical reconstruction of the quantum 
logical structure can be carried out. Details are left aside since they can 
be filled out following standard reconstructions, (for example, see Piron 
1976). 

3. The Basic Semantical Framework. The usual motivation for the 
construction of the quantum logical framework (see, for example, Piron 
1976) is to explain the quantum mechanical structure on the basis of purely 
"logical" assumptions. In order to achieve this goal, however, quantum 
logicians rely on the usual interpretation of quantum mechanics and, when 
that is not enough, on purely ad hoc postulates. My reconstruction of the 
quantum logical structure has an altogether different motivation. I do not 
think one can get away in quantum mechanics without some basic as- 
sumption about the probabilistic structure of the theory which is not re- 
ducible to "logical" considerations. Therefore, I explicitly start with ax- 
ioms of a probabilistic nature. They are very simple and natural axioms 
and, once they are accepted, little is needed in the way of interpretive 
commitments to arrive at the quantum logical structure. Furthermore, these 
interpretive commitments are formulated explicitly via the concept of B- 
state. In this way the logico-algebraic formulation of the foundations of 
quantum mechanics can serve the purpose of discussing and clarifying 
interpretive issues on an altogether different basis from what is commonly 
referred as "Quantum Logic" (like Piron's, but also Bub 1979, Stairs 
1982, and Friedman and Putnam 1978). 

I assume that a physical system can be represented by a set of discrete 
magnitudes, each magnitude being represented by a complete atomic 
Boolean lattice generated by a set of possible exclusive events, the results 
of the measurements of the magnitude. Each result or outcome corre- 
sponds to an atom of the Boolean lattice representing the magnitude. It 
will be assumed that each magnitude is a submagnitude of (at least one) 
maximal magnitude and furthermore that all maximal magnitudes have 
the same (at most countable) dimension. Notice that in each magnitude 
Mi (via its representation as a Boolean algebra) there is a well-defined 
orthogonality relation I,. I will write x I y instead of "x I y for some 
i E I", where i indexes the magnitudes of a system S. A basis for a 
magnitude is a maximal set of (orthogonal) atoms. Since an atomic Bool- 
ean lattice is uniquely generated by its atoms, I will usually identify a 
maximal magnitude with its basis. I postulate that a measurement situ- 
ation can be represented by a pair (a,M), where a is an atom of M and 
M is a maximal magnitude. This reflects the idea (originating with Bohr) 
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that values of magnitudes in quantum mechanics must be understood as 
relative to an "experimental arrangement". Let [a)M be the Boolean ultra- 
filter in M generated by a. The expression [a)M will be taken to represent 
the B-state generated by the situation (a,M). Sometimes I will talk of 
maximal magnitudes as measurement situations. This ambiguity will al- 
low for a less cumbersome notation, but it should be kept in mind that, 
when fully described, a measurement situation includes the specification 
of a state (atom) of the corresponding maximal Boolean algebra. 

It might be worth emphasizing that I am not going to argue here for 
any specific interpretation of quantum mechanics based on the concept 
of B-state. I believe that a satisfactory interpretation of quantum me- 
chanics (if any can be found) will incorporate a concept of individual 
state "relative" to experimental situations as this is formalized in the con- 
cept of B-state. But precisely what this relativity amounts to is an open 
question and I do not pretend to answer this question here. Accordingly, 
I do not address crucial decisions leading to different interpretations. For 
example, I leave open the question of whether the state of a physical 
system relative to experimental situations is taken to mean that the system 
has indeed relational properties with respect to possible physical inter- 
actions as Kochen claims, or whether this concept of B-state applies only 
to the properties elicited by an actual (last) measurement as Bohrian inter- 
pretations claim. This is, of course, a crucial interpretive issue, one that 
must be addressed in order to analyze EPR type situations for example. 
My point is that independently of these interpretive commitments, a phys- 
ical interpretation of Liiders's rule is available for interpretations in which 
individual states are taken to be B-states. 

Finally, the following fundamental assumption is added: the B-states, 
that is, the atoms of the maximal Boolean lattices representing a given 
physical system, are related by a transition probability function. In this 
way, I formulate the assumption that there is a nonclassical physical pro- 
pensity for states of quantum systems to "jump" to a different state in a 
different experimental (measurement) situation. In other words, I pos- 
tulate the existence of a transition probability function that assigns a num- 
ber (between zero and one) interpreted as the probability of transition 
between states for each pair of (Boolean) states. The question of exactly 
how this transition probability is to be interpreted physically will not be 
addressed here, (but see section 4 for a relevant discussion). It will be 
assumed that however such transition is to be interpreted, the correspond- 
ing transition probability function t(. , .) will satisfy the following ax- 
ioms: for x,y B-states of a system S, 

Axiom 1: x I y if and only if t(x,y) = 0, 
Axiom 2: li;zt(x,yi) = 1 where {yi} is any basis (a maximal set of 

orthogonal atoms). 
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Let me first motivate these axioms.1 Notice that axiom 2 is a straight- 
forward requirement on probability assignments. It simply states the as- 
sumption that t(x,y) is supposed to describe probabilities. Now consider 
axiom 1. If x I y (i.e., if x and y are B-states in a common Boolean 
algebra), we certainly want t(x,y) = O. After all, what we mean when 
we say that two atoms belong to a common magnitude (experimental sit- 
uation) is that they behave "classically" with respect to each other in the 
sense that if one of the two states happens to be the case, the other is 
excluded (in the classical sense of not being the case). The other direction 
of axiom 1, however, carries with it an important empirical claim. It takes 
the impossibility of a transition between two Boolean states to imply an 
orthogonality relation between them. 

The semantical framework to be used here relies on an identification 
of Boolean states based on the following theorem: 

THEOREM 3.1. For x,y B-states, t(x,y) = I if and only if x = y. 

Proof: Assume t(x,y) 1. The element y is a B-state and thus there 
exists a maximal magnitude with basis {yi} such that Y =y. Hence, 
by axiom 2, t(x,y) t(x,y) + i;2t(X,yi) = 1. Since t(x,y) - 1, then 
t(x,yi) 0 for i> 22 and thus, by axiom 1, x I yi for i > 2. Element 
x is then a B-state orthogonal to all but one of the elements of a basis 
(of a Boolean lattice) and thus x = y. Now suppose x = y. Then 
there is a basis {yi} such that Yi = x and El? It(x,y1) = I by axiom 
2. If t(x,yl) = t(x,x) #& 1, then t(x,yi) =# 0 for some i ? 2, contra- 
dicting axiom 1. 

The quantum logical structure will be seen as arising from a process 
in which the different magnitudes are "glued" together into a physical 
system represented by an orthomodular structure. Two B-states (atoms) 
are "glued" together if the transition probability between them is 1. 

4. The Derivation of Luders's Rule. In the orthodox view, states get 
represented by lattice ultrafilters and thus the concept of state transfor- 
mation can be defined independently of magnitudes (see section 2). But 
in our present framework, based on the concept of B-states, we have to 
modify accordingly the underlying concept of state transformation to be 
used in the description of measurement. Given a system in state [a)M and 
assuming that magnitude N iS measured with result (represented by prop- 

'The function t(. , .) is an abstract version of the transition probability function for pure 
states in quantum mechanics given by the square of the absolute value of the inner product 
of vectors representing the pure states. See Beltrammetti and Cassinelli (1981, chap. 18) 
for a survey of this topic. For a specific proposal formulating the quantum mechanical 
structure in terms of transition probability structures, see Mielnik (1968). 
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osition) r, the final individual state must be [b)N where r > b and b is 
an atom of N. We can represent state transformations of this sort as fol- 
lows: T([a)M,r) = [b)N. However, when the specification of the magni- 
tudes involved is unnecesary (as it will be usually the case), reference to 
magnitudes will be dropped and we will simply write T(a,r) = b. Also, 
when the specification of r is unnecesary, I will write T(a) = b. 

State transformations involve an initial and a final magnitude. Suppose 
that a preparatory measurement of magnitude M has taken place and sys- 
tem is in state [a)M, and that subsequently we measure proposition A. 
Suppose s4 = {ai} is a subset of the atoms of magnitude N generating A 
(i.e., V {ai} = A). In general there will be several atoms (states) in s4 
which are accessible (nonorthogonal) from the initial state a. Each ac- 
cessible state in s4 defines a state transformation which, we will say, is 
N-consonant with the measurement of A. For example, let b, and b2 be 
two accessible states from a, with bl, b2 E N. This means that t(a,bl) #Z 
0 and t(a,b2) ?/ 0. The equations T(a) = b, and T(a) = b2 are state trans- 
formations N-consonant with A. But how can we go from here to establish 
a connection with Liuders's rule? Let us see first some examples of what 
can happen. 

Consider the lattice generated by the gluing of two magnitudes M = 
{a1,a2,a3} and N = {bj,b2,b3}. Let us suppose that t(a3,b3) 1 but t(al,bi) 

1 for i #& 3, j #& 3. According to axiom 1 for t(, ) we identify a3 
with b3. Clearly a3? holds whenever b3? holds (and vice versa). This leads 
us to identify also a3? with b3. The Haase diagram (see Appendix, part 
A) of the gluing of M and N is given in figure 1. Select a state in M and 
a proposition in N. For example, let the initial state be a, and suppose 
we determine b2 V b3 as a result of measurement. The only state trans- 
formation N-consonant with measurement is T(aj) = b2. 

Now consider another example. Let M = {a1a,a2,a3,a4} and N = 
{bj,b2,b3,b4}. Suppose that M and N have only one overlapping element 
a3 = b3 for example. The Haase diagram of such "gluing" is given in 
figure 2. With initial state a,, if the result of measurement is b2 V b4, for 
example, T(a1) = b2 and T(a1) = b4 are N-consonant state transforma- 
tions. But suppose that there are two overlapping elements, say a2 = b2 
and a4 = b4. In this case we should also identify a2 V a4 with b2 V b4. 
The resulting Haase diagram of this gluing is represented in figure 3. 
Suppose, for example, that initial state is a, and we measure b3 V b4. The 
only measurement transformation consonant with this measurement is T(aj) 
= b3. We will say in this case that T(a1) = b3 is the pure or dispersion 

free state transformation representing the measurement. Notice that in this 
situation, for any initial state (atom) ai in M there is a unique state trans- 
formation T(ai) = b which is consonant with the measurement of an ar- 
bitrary proposition A (generated by N). 
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0 
Figure 1. Haase diagram of the lattice generated by the Boolean lattices A (with atoms 
a,, a2, a3) and B (with atoms b,, b2, b3). Elements are represented by circles, and an 
element x being "less than" another element y is represented by joining the two elements 
with a line going up from x to y. 

In general, for a system initially in state [a)M a state transformation 
T(a,A) = b is called dispersion free (or pure) with respect to the mea- 
surement of a proposition A in N if T(a,A) = b is the only state trans- 
formation (into N) consonant with this measurement of A. It seems then 
natural to say that M and N are ideal magnitudes relative to each other 
if, given that the system is in a state represented by an atom of one of 
the two magnitudes, after measurement of the other magnitude the system 

a1 b1 82 b2A3=b3 a4 b4 
Figure 2. Partial Haase diagram of the pasting of two Boolean lattices with center C(L) 
= {0,1 ,a3,a3}. Relations of the form 0 '< x and x < 1 are not depicted. For easier reading 
of the diagram, elements of the different Boolean lattices are represented by circles of 
different sizes. 
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a bab a=b4 
Figure 3. Partial Haase diagram of the pasting of the same Boolean lattices as in figure 
2, but now with full center. 

either remains in the same state (but maybe in a different measurement 
situation) or else it changes to a state described by a pure state transfor- 
mation. The following question arises. Is it possible to find simple nec- 
essary and sufficient conditions characterizing (algebraically) magnitudes 
which are ideal relative to each other? This would lead us to a charac- 
terization of ideal measurements via pure B-state transformations. I will 
answer this question in the affirmative and show how this approach to 
ideal measurements provides us with an interpretation of Liiders's rule as 
a description of pure (dispersion free) transformations. 

It is clear from the definition of the center of a lattice (see definition 
[A.5] in Appendix, part A) that the center of the lattice generated by the 
gluing of magnitudes M and N is constituted by the elements that are 
"glued" together. The examples above suggest that intuitively two mag- 
nitudes are ideal relative to each other when they have a "big enough" 
(relative) center. This idea is made precise below. The proofs of the fol- 
lowing theorems are carried out using terminology and lemmata proved 
in part B of the appendix. 

THEOREM 4.1. Let L = Lat(M,N) be the sublattice of two blocks gen- 
erated by maximal magnitudes M and N. C(L) (the center of L) is 
full if and only if M is ideal relative to N. 

Proof: Suppose M and N are not relatively ideal. That means that there 
is a proposition A, A E N but A ? C(L) such that an N-basis of A 
includes two atoms x, y accessible from some state a in M. Suppose 
x V y E C(L), then x V y E Fc (where Fc is the [maximal] central 
filter generated by fo, see lemma [B.5] in Appendix, part B and be- 
low) and x V y < A, and thus A E C(L) contradicting assumption; 
so, x V y ? C(L). Hence, the "floating atom" fo (see lemma [B.6] 
in Appendix, part B) is generated by at least three atoms and this 
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implies, by corollary (B.7) in Appendix, part B, that C(L) is not 
full. This proves (by contraposition) that the fullness of C(L) is a 
sufficient condition for M to be relatively ideal to N. Now suppose 
that C(L) is not full. Then A(F) has more than two elements (by 
corollary [B.7]) and thus there are two atoms x E N, y E N such 
that x ? C(L), y q C(L) and x V y ? C(L). Take b = x V y. There 
are two state transformations T(a,x) and T(a,y) which are consonant 
with the measurement of b and thus M and N are not ideal relative 
to each other. 

THEOREM 4.2. Let L = Lat(M,N) be a two block orthomodular lattice 
(generated by atomic Boolean lattices M and N). Luders's rule se- 
lects a unique final state in L if and only if C(L) is full. 

Proof: Assume C(L) is not full. Hence, for any x in N, and for any 
atom a of M, with a not in C(L), x' V a ? e(a) b b, for any atom 
b in N. From the fact that e(a) does not cover b, it follows that e(a) 
' b, V bm V b, for bl, bn, b, atoms of N. Select x = b, V b,. Clearly 
x A (x' V a) ? x A e(a) ' b, V b,. Thus Luiders's rule does not 
select in this case an atom of N. Assume C(L) is full. We want to 
show that x A (x' V a) is an atom (or x A (x' V a) = 0). Now, if 
{x,xI,a} is a distributive triple, then x A (x' V a) = 0, or x A (x' V 
a) = a. Suppose that {x,x',a} is not a distributive triple. In this case, 
we must have a (Z Ic, and x E N. Since a (Z Ic, then e(a) E F, (by 
lemma [B.5]) and e(a) = b, V b2 for b1, b2 atoms of N (by lemma 
[B.2]). The following cases arise: (i) b, ? x, b2 ? x. Since e(a) E 
FC, it follows that x E C(L). This case reduces then to the case in 
which the triple {x,x ,a} is a distributive triple. (ii) b, $ x, b2 $ x. 
In this case, b, ? x', b2 ? x', it follows then that x' E C(L) and 
thus again it reduces to the case of a distributive triple. (iii) b, ' x, 
b2 $ x. Now, b2 $ x implies b2 $ x A (x1 V a); on the other hand, 
b? x, and b, ' e(a) by hypothesis for this case, and e(a) ? e(a) 
V e(xl) = e(a V x') = a V x', thus b, ? x A (x1 V a). Suppose b, 
< x A (x1 V a). Then, by atomicity of L, there must exist an atom 
bj E N, bj #bi, such that bj < x A (x1 V a), hence bj ' x and bj 
? (x' V a) ? x' V e(a). But bj $ e(a) since by hypothesis e(a) = 
b, V b2; and bj $ xl since bj < x. This shows that there cannot be 
such an atom b1 and thus bi = x A (x1 V a). (iv) b, $ x, b2 ? x. 
As for (iii), one concludes that b2 -x A (x' V a). 

COROLLARY 4.3. If two magnitudes M and N are ideal relative to each 
other then the only state transformation N-consonant with a mea- 
surement of a submagnitude A of N, for arbitrary initial situation 
(a,M), is given by Luiders's rule. 
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This corollary follows immediately from theorems (4.1) and (4.2). 
A lattice (with 0) has the covering property if a A x = 0 implies x < 

x V a for any atom a and x E L (x < y if x < y and for no z, x < z < 
y). If the covering property holds in an orthomodular lattice then Liiders's 
rule selects an atom in the lattice (see Piron 1976, for example). Using 
this result and theorem (4.2), the following corollary follows. The cor- 
ollary can also be proved directly by a slight modification of the proof 
of theorem (4.2). 

COROLLARY 4.4. Two magnitudes M and N are ideal relative to each 
other if and only if Lat(M,N) has the covering property. 

The following theorem provides the final step in our analysis. 
THEOREM 4.5. If L is a complete atomic orthomodular lattice the fol- 

lowing two conditions are equivalent: 

(i) L has the covering property. 
(ii) for any pair (a,x), where a is an atom of L and x is an arbitrary 

element of L, a lattice Lat(a,x) with the following properties can 
be constructed (shown below): 
(a) if a is compatible with x then Lat(a,x) is a maximal Boolean 

algebra including a and x. 
(b) if a is not compatible to x then Lat(a,x) is an orthomodular 

lattice of two blocks with the covering property. 

Proof: In case (ii,a) the equivalence with (i) is immediate. Assume that 
a is not compatible with x. Let us prove first that (i) implies (ii). I 
first show how the construction goes for three-dimensional lattices 
and then I sketch how this construction can be carried out for the 
general case. Under the assumption of the covering property, Liuders's 
rule selects an atom: L(a,x) = x A (x' V a) af. Suppose x is two 
dimensional (the interesting case). That means that (x' V a) and x 
share one and only one atom (af). Now, x' I L(a,x), and since 
(x' V a)' is also an atom, we can construct 

Bf = {x',(x' V a)', x A (x' V a)} 
B = {a,(xl V a)I, a' A (x' V a)}; 

Bi and Bf generate an orthomodular sublattice of two blocks with full 
center, and thus with the covering property. This lattice we call 
Lat(a,x). For more than three dimensions, the construction proceeds 
as follows: if x is a dual atom (i.e., if x < 1), the construction of Bi 
and Bf-and of Lat(a,x)-follows the same steps, the only differ- 
ence is that now the center (x' V a)' is not an atom but a subspace 
and thus we have to replace (x' V a)' with a basis of it. If x is not 
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a dual atom, select a dual atom s such that x < s and construct 
Lat(a,s). Notice that L(a,x) L(a,s) and (xl V a)' < (s' V a)', 
whence L(a,x) V (x' V a)' x E Lat(a,s). Thus Lat(a,s) has the 
properties required for Lat(a,x). To show that (i) follows from (ii) 
we have to show that if a A x = 0 then x < a V x, for any atom a 
and any element x of L. By assumption there is a sublattice Lat(a,x) 
with the covering property generated by maximal Boolean algebras 
(in L), for any atom a and element x. Therefore, in the lattice Lat(a,x), 
if a A x = 0 then x < a V x; but clearly there is no z in L such that 
x < z < a V x, since Lat(a,x) is generated by maximal Boolean 
blocks and x < z < a V x would imply that z is in Lat(a,x), con- 
tradicting the assumption that the covering property holds in the 
Boolean blocks. 

I have shown that a very simple algebraic condition characterizes "dis- 
persion free" B-state transformations. Dispersion free transformations are 
minimally disturbing in the sense that the center of the orthomodular lat- 
tice of two blocks generated by the transformation is full. Alternatively, 
Corollary (4.3) provides ground at the level of individual states for the 
usual motivation for Liiders's rule as a rule describing measurements with 
"no loss of information". Furthermore, the present derivation, inter- 
preted as a description of a physically distinguishable class of (dispersion 
free) measurements, allows us to establish a link between individual and 
statistical state transformations via Luiders's rule. The notion of "re- 
specting compatibility" for statistical measurement transformations is found 
to have its counterpart in the notion of "dispersion free" individual state 
transformations. This connection between individual states and quantum 
statistics will be explored in more detail elsewhere. 

At least something has to be said here, however, about an immediate 
question elicited by the above derivation. I have derived Liuders's rule 
for maximal magnitudes and B-states. This derivation then provides an 
alternative way of understanding von Neumann's original interpretation 
of nonmaximal measurements, but it confronts us, at least prima facie, 
with the difficulties that such an interpretation faced and which led to its 
dismissal. It is important, however, to notice first of all that the derivation 
here presented refers to B-state transformations and thus the objections 
raised against von Neumann's original proposal do not apply to this inter- 
pretation of nonmaximal measurements as ideal maximal measurements 
of a special sort. To see this, let us consider the objection to von Neumann's 
rule presented above (see section 1). There it was assumed that a mea- 
surement of one of the subsystems of the composite system S1 + S2 is 
made with an apparatus that indeed performs a maximal measurement in 
the composite system. This is unacceptable since it seems to imply that 
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the measurement apparatus has to read our mind to select the total system 
from which S1 is a subsystem. The present derivation of Liuders's rule 
suggests the following different interpretation. The measurement appa- 
ratus interacts with the measured system in such a way that it changes 
the system in a certain way. It is a particular type of change that makes 
of the measurement an ideal measurement. 

Returning to the above mentioned difficulty with von Neumann's pro- 
posal, as this comes out in Bub's example, we can think that the mea- 
surement of A 0 I2 in one of the subsystems results in a change of the 
individual state that is the same as the change it would experience if it 
were measured with a different apparatus, one that would measure the 
(unique) maximal magnitude associated with Liuders's rule through the 
present derivation. 

5. The Relation Between t(.,.) and Quantum Conditional Proba- 
bilities. In this section, I want to clarify the relation between the tran- 
sition probability function t(. , .) postulated in section 3 above and the 
probabilities generated by the fundamental algorithm of quantum me- 
chanics. This should justify the implicit claim in my proposal that the 
postulated transition probabilities generate (or correspond to) the proba- 
bilistic structure of quantum mechanical predictions. Thus, at least in 
principle, one should be able to show how the usual quantum mechanical 
probabilities generated by measurement reduce to our framework of tran- 
sition probabilities. 

Several investigations have shown that important conceptual difficulties 
facing the interpretation of probabilities as distribution over properties can 
be overcome (or at least seen in a new light) once the probabilities in 
question are seen as ultimately referring to transition probabilities be- 
tween states. Here, my aim is not to show how a full-fledged reduction 
of probabilistic claims in quantum mechanics to transition probabilities 
can be carried out, even less, how this reduction can be used for over- 
coming difficulties of interpretation beyond the problem of interpretation 
of the projection postulate. I assume one necessary component of such a 
reduction which is independent of any details of a specific reconstruction 
of the quantum logical (Hilbert space) structure or its philosophical con- 
sequences. This is the assumption that on the basis of transition proba- 
bilities we must be able to calculate conditional probabilities for elements 
A in L in a given state using the formula (c) below: 

P(A/a) = lt(ai,a) (c) 

where {ai} is a basis A, and a is an arbitrary B-state. 
The conditional probabilities given by (c) are supposed to correspond 

to the probabilities given by the fundamental algorithm of quantum me- 
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chanics. That is, P(A/a) is to be interpreted as the probability that, given 
that the system is in state a, a measurement (of the appropriate kind) will 
show A to be the case. Formula (c) provides us with conditional proba- 
bilities which depend, at least prima facie, on the selection of the basis 
for A. Mielnik (1968) has shown that a sufficient condition for this for- 
mula to be representation invariant is that all bases have the same di- 
mension. Since we are assuming that a system is constituted by maximal 
magnitudes of the same dimension, Mielnik's proof applies in our frame- 
work. 

But look at figure 2. In this case, it is clear that the conditional prob- 
abilities described by (c) do not fully reduce to transition probabilities 
unless additional axioms for t(. , .) or empirical restrictions are added. 
For example, formula (c) requires that P(b2 V b4/a1) = t(b2,a1) + t(b4,aj). 
It seems that the only way in which this reduction of the conditional 
probability to transition probabilities can take place with full generality 
is if (at least) in one representation all but one of the terms in the sum- 
right side of (c)-reduces to zero. Otherwise it could very well happen 
that P(b2 V b4/al) > 1. It has been shown (see theorem 4.5) that the 
validity of the covering property is the necessary and sufficient condition 
for this to happen. Furthermore, this theorem shows that whenever the 
sum (c) reduces to zero for all but one of the terms, the only accessible 
(nonorthogonal) atom to the initial state is given by Lilders's rule. It is 
clear then that in quantum lattices the conditional probability formula (c) 
can be represented as follows: 

P(A/a) = t(a,L(a,A)) (cc) 

where L(a,A) stands for the atom generated by the Liuders's transfor- 
mation with initial state a and element A. We see then that the validity 
of the covering property in quantum lattices insures the reduction of the 
conditional probability formula to the transition probability framework we 
have postulated as fundamental. Thus, this result provides an alternative 
(lattice theoretical) route to the same conclusion reached by Bub's anal- 
ysis of quantum statistics via generalization of the standard (Kolmogorov) 
theory of probability (see Bub 1979) and references therein. 

To conclude, I have shown that one can derive Liuders's rule from well- 
motivated explicit physical assumptions within the framework of inter- 
pretations of quantum mechanics for which individual states get algebra- 
ically represented by B-states. It remains to be seen whether a satisfactory 
interpretation of quantum mechanics based on the representation of in- 
dividual states by B-states can be implemented. But the fact that Luiders's 
rule plays a central role in the conceptual structure of quantum mechanics 
via B-state interpretations seems to me to point to a promising area of 
research in the philosophy of quantum mechanics, and in particular to a 
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way of making sense of the statistical claims of quantum mechanics with- 
out hidden variables. 

APPENDIX 

This appendix has two parts. In part A, I collect well-known terminology and results 
of lattice theory that are used in the paper. In part B, I prove some lemmata which char- 
acterize the structure of orthomodular lattices with two blocks as this is required for the 
proof of the theorems in sections 3 and 4. 

Part A: Lattice Theoretical Background. An algebra (L,A,V) is called a lattice if L is 
a nonempty set and A and V are binary idempotent, commutative and associative operations 
on L (called respectively the "meet" and the "join") satisfying the so-called absorption 
identities: 

a A (a V b) a 
a V (a A b) a (A. 1) 

A lattice is complete if for any subset S of L the join V (a; a E S) and the meet A (a; 
a E S) exist. Finite lattices can be described using Haase diagrams. Haase diagrams rely 
on the graphic representation (by means of segments of lines) of the relation of covering. 
We say that a covers b (notation: a > b) if a > b and for no x, a > x > b. The elements 
of the lattice are represented by small circles. If x covers y then the circle representing x 
is higher up than the circle representing y. 

An orthocomplemented lattice, or simply, an ortholattice, is a lattice with 0 and 1 and 
with an orthocomplementation (a mapping a -- a' of L onto itself satisfying: 

i) a V al' 1 a A a' = O; 
ii) a s b za a' b'; 

iii) a" = a. 

An orthomodular lattice is an ortholattice that satisfies the orthomodular identity: 

a bzb =aV(bAa'). (A.2) 

A triple (a,b,c) of elements of L is distributive if: 

aA(bVc) = (aAb)V(aVc). (A.3) 

A lattice is distributive if for any a, b, c in L (A.3) is satisfied. A distributive ortholattice 
is called a Boolean lattice. For distributive lattices orthocomplementation is a dual auto- 
morphism, thus the orthocomplement of an element is unique. 

DEFINITION A.4. In an orthomodular lattice two elements b and c are said to be com- 
patible if the sublattice generated by {b,b',c,c'} is distributive. 

DEFINITION A.5. The set of elements in a lattice L which are compatible with all other 
elements is called the center of the lattice and denoted by C(L). 

An element of C(L) is called a central element. A filter in C(L) is called a central filter. 
For ortholattices, C(L) is always a Boolean lattice. In a complete orthomodular lattice L 
there exists a unique least central element e(a) called the central cover of a such that a < 
e(a) for any a E L. 

LEMMA A.6. In a complete orthomodular lattice: 

i) e(a V b) = e(a) V e(b); 
ii) if z E C(L), then e(z A a) = z A e(a). 

(See Maeda 1970, 5. 11.) 
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DEFINITION A.7. A filter F is a set of elements in a lattice L satisfying the following two 
conditions: 

i) if x, y E F, then x A y E F; 
ii) if x E F, then x V y E F, for any y in L. 

A filter is proper if 0 ? F. In this exposition, filters are always proper. A filter F is 
maximal if there is no other filter F' such that F is a proper subset of F'. A maximal filter 
is also called an ultrafilter. 

Since in von Neumann's formulation of quantum mechanics physical systems are rep- 
resented by Hilbert spaces and subspaces and projection operators play a fundamental role 
in the formulation of the theory, one is led to characterize the mathematical structure of 
the theory in purely lattice theoretical terms on the basis of the following theorem. 

THEOREM A. 8. Let H be a Hilbert space, the set Lc(H) of all closed subspaces of H 
forms an irreducible complete atomic orthomodular lattice with the covering property. 

(See, for example, Maeda 1970, theorem 34.8.) 
A lattice with 0 is atomic when for every nonzero element x there exists an atom a such 

that a ' x. An atom of L is an element a such that 0 < a. A dual atom (or antiatom) is 
an element x such that x < 1. A lattice (with 0) has the covering property if a A x = 0 
implies x < x V a for any atom a and element x. A complete atomic orthomodular lattice 
with the covering property is called a quantum lattice. 

Lattice Formulation of Liiders's Rule. The fundamental algorithm of quantum mechanics 
states that a measurement of the quantity A in a system in the state Q gives the result ar 
with probability Prob(ar) = tr(QPr). Lilders's rule states that after a measurement with 
result represented by P, the state of the system is given by PQP = (trQP)P. Let EI(PQP) 
denote the support of the projection PQP, that is, E,(PQP) is the orthocomplement of the 
null space of PQP, denoted by Eo(PQP). 

THEOREM A.9. For all projections P, Q in H, Eo(PQP) = P' V(P A Q'). 
For the proof see Hardegree (1976). 

COROLLARY A. 10. E 4(PQP) = E,(PQP) =P A (P' V Q). 
In our abstract lattice theoretical framework then, the transformation L(q,p) = p A (p' V 
q) represents Luiders's transformation, where q is an atom and p represents an arbitrary 
element in L. 

DEFINITION A. 11. A set B = {a,,. ak} of compatible atoms in a ortholattice L is a 
basis for an element q E L, if q = a, V . . . V ak, that is, B generates q, but no 
subset of B generates q. 

If every basis of q has the same cardinality then we call k the dimension of q, and write 
dim(q) = k. 

Part B: The Structure of Orthomodular Lattices with Two Blocks. I am interested in 
a description of the structure of complete atomic orthomodular lattices obtained by pasting 
together two atomic Boolean lattices M and N. Atomic Boolean lattices M and N are called 
the components or blocks of the resulting orthomodular structure. Pasting involves the 
identification of a Boolean subalgebra Bo in M with an isomorphic copy (of BO) in N. A 
lattice L = Lat(M,N) is then constructed where the corresponding elements (under the 
isomorphism) are identified. The center of the lattice, C(L), is the Boolean subalgebra in 
L resulting from the identification of the two isomorphic copies of Bo. My aim is to char- 
acterize atomic orthomodular lattices of two blocks with the covering property in terms of 
the structure of the center. The first restriction we have to impose on Bo is that it is (what 
I will call) a FI-Boolean subalgebra. A Boolean subalgebra of an arbitrary Boolean algebra 
M is a FI-subalgebra (relative to M) if it is a complete Boolean subalgebra that can be 
represented as the union of a filter and an ideal of M. 
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An extension of a filter F is a (proper) filter Fe properly containing F. An extension of 
a Boolean subalgebra B is a Boolean algebra Be properly containing B. An extension Fe 
of a filter F is maximal in a Boolean algebra B if Fe is a maximal filter in B. 

In the proofs of the lemmata below, I use freely two properties of atomic Boolean al- 
gebras: (i) if a < b, then there exists an atom p such that p ' a and p < b; (ii) x < y' if 
and only if x A y = 0. Property (i) says that the algebra is atomistic; property (ii) says 
that for Boolean algebras, complementation is pseudo-complementation. 

DEFINITION B. 1. C(L) is full if there are no (proper) extensions of C(L) (as a Boolean 
subalgebra) in M and N. 

Let B be a FI-Boolean subalgebra (of M) that can be represented as the union of a 
principal filter and a principal ideal, B = [x) U (x'], where [x) is a maximal filter in B, 
that is, x is an atom of B and x' is a dual atom of B. The following lemma provides 
necessary and sufficient conditions for the principal filter [x) (and thus for B) to have only 
maximal extensions in M. 

LEMMA B.2. For a,b atoms of M, x = a V b if and only if [x) has only maximal exten- 
sions in M. 

Proof: Suppose x = a V b. Let F be an extension of [x), then there is y E F such that 
y ? [x). Notice that y ? (x'] since y E(x'] if and only if x A y = 0, and this would 
imply x A y = O E F, contradicting the assumption that F is a proper filter. Now, x 
A y = x iff x ' y. Since x $y, then x A y ?4 x, hence x A y < x and thus [x A y) is 
an extension of [x) including y. Since x A y = a or x A y = b, there are only (two) 
maximal extensions of [x) (in M). Now, for the converse, if there are only maximal 
extensions of [x) then x covers a for some atom a of M. This can only be the case if 
x = a V b, for a,b atoms of M. 

The above lemma shows that if C(L) can be represented as the union of a principal filter 
and a principal ideal of M, and if C(L) is maximal, then there are no proper extensions 
of C(L). Using the hypothesis of completeness, one can show that every FI-subalgebra of 
M can be represented in this way. Furthermore, this representation is unique (relative to 
A). This is the content of the following lemmata. 

LEMMA B.4. Let B be a FI-Boolean subalgebra of M. Let IB be the ideal generated by 
the atoms of B which are atoms of M. Element IB is a maximal ideal in B. 

Proof: Suppose IB is not maximal, then there is an extension IB' with an atom a of B 
which is not an atom of M. Since a is not an atom of M, then there is an atom b in 
M such that b < a. But then b would also belong to IB' contradicting the assumption 
that a is an atom of B. 

We can then represent B as the filter-ideal pair B = (FB, IB), where FB is the filter dual 
to IB. We are interested in the case B = C(L) (M M). For brevity we will use C instead 
of C(L) in the lemmata below. 

LEMMA B.5. If a is an atom of M, then e(a) is an atom of C. 

Proof: Let x E C and 0 < x ' e(a). Then e(x A a) = x A e(a) = x > 0 (see lemma 
[A.6]). Since e(y) = 0 iff y 0, then x A a ?? 0, and since a is an atom of M (an 
atom of L) x A a = a, hence a -' x, whence e(a) ' e(x) = x. Thus e(a) = x. 

The result of Lemma (B.4) can be sharpened using completeness and Lemma (B.5). Let 
A(F) be the set of atoms of M which are not in I,. I show that all elements of A(F) have 
a common cover. By completeness V {x; x E A(F)} exists. Suppose y, z E A(F) and e(y) 
? e(z). Since y, z are not in I, then y, z as well as e(y), e(z) are in F, since F, is a filter 
and x < e(x) for all x and thus 0 ?4 e(y) A e(z) E F, (since F, is a proper filter). The 
assumption that e(y) ?? e(z) implies that e(y) < e(z) or e(y) A e(z) < e(z) or alternatively 
e(z) < e(y) or e(y) A e(z) < e(y) contradicting our earlier result that e(z) and e(y) are 
atoms of C. Let us denote by f, the common cover for the elements of A(F), that is, fo 
e(x), for all xA(F). 
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LEMMA B.6. V{x; x E A(F)} = fo. 
Proof: Clearly v{x; x E A(F)} - fo. Suppose V {x; x E A(F)} < fo, then there is an atom 

a of M such that a < fo and a 9A(F). But a s4I, since a < fo and fo is an atom of C, 
contradicting our assumption. 

The elementfo can be called the "floating atom". The elementfo is the only atom in the 
center which is not an atom of the lattice. Suppose P is a proper subset of A(F). Then it 
follows from Lemma (B.6) that V {x; x E P}I C. If A(F) has more than two elements 
then the center C (of L) admits nonmaximal extensions. This proves the following cor- 
ollary. 

COROLLARY B.7. A(F) has more than two elements if and only if C(L) is not full. 
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